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Abstract: Triethyl phosphite-induced cyclisation of 1-oxalyl-4-(alkylthio-thionocarbonyl- 
thiomethyl or -oxymethyll-2-azetidinones provides novel 3-alkylthio isocephems and iso- 
oxacephems. 

Isocephems (1) and their oxygen analogs (2) bearing H, Me or substituted Me at C-3 are 

known and have useful antibacterial activity when appropriately substituted'. During the 

development of the oxalimide route to the penems2, we sought to apply this cyclisation 

method to the formation of dihydrothiazine and dihydro-oxazine rings, and describe herein 

the resulting route to novel, 3-thiosubstituted isocephem structures. 

The known azetidinone3 (3) was converted C03: Me2S: NaRH4 then CH3S02C1-NEt31 to 

alcohol (4) and mesylate (5). 

provided trithiocarbonate (614. 

Displacement rFtSCS2Na-DMF] and desilylation IHCl-H20-THFl 

The related xanthate4 (7, mp 80-82') was also obtained 

from alcohol (4) [NaH-CS2-CH31 then HCl-H20-THFl. lj-Acylation of (6) and (7) with 

allyloxalyl chloride-iPr2NEt2 followed by treatment of the crude oxamates (81 and (91 

with (Et013P r2,5 eq: CH2C12, 45'. 40 h for (81 and C6H6, 85', 18 h for (911 gave after 

chromatography and recr.ystallisation the 7-unsubstituted isocephem (1014, mp 60-62' (68%) 

and the iso-oxacephem (11)4, mp 83-85' (41%). These esters were converted to the 

amorphous salts (121 and (13) by homogeneous, Pd-catalysed ester exchange deprotection5 

[K-2-Et-hexanoate, 5 mol. % Pd(PPh314, EtOAc, 25'/1 hl. As anticipated for 

7-unsubstituted cephalosporin analogs, both of these salts lacked significant 

antibacterial activity. 

(1) x = s 
R2= H , Me or CH,R 

R2 (2) x=0 
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(3) R’= CH=CH, , R*= SiMe,t-Bu 

(4 R’ = CH,OH , R*= SiMe,t-Bu 

(5> R’ = CH,OMs , RZ= SiMe,t-Bu 

(4 R’ = CH2SCS2Et , R* = H 

(7) R’ = CH,OCS,Me , R* = H 

(8) R’= CH2SCS2Et , R2= COCO,x 

(9) R’ = CH,OCS,Me, R’= COCO, 

R’ = SEt , R* = e , x = s 

R’= SMe, R* = e , X q 0 

R’ = SEt, R*= K, x= s 

R’- SMe, R*= K, X= 0 

The cis-7-acylamino analogs were prepared from the iodomethyl azetidinone (14J4. - 

itself available from ketene-imine cycloaddition6 to give (15), substituent manipulation7 

and final de-N-arylation with ceric ammonium nitrateg. Iodide (14) was converted in 72% 

overall ,yieldto the differentially protected isocephem (16J4, mp 149-151' fNaSCS2Et-DMF: 

Cl-l2 = CC1CH20C0.COC1-iPr2NEtq: (Et0)3P, C6H6, reflux 8 h]. Despite the sensitivity of the 

unsubstituted compound (10) towards acid, brief treatment of (16) with CF3C02H then Na2C03 

provided the unstable aminolactam (17j4 cleanly, and this was quantitatively acylated with 

E-allyloxycarbonyl-g-phenylqlycine and EEOQ". Deprotection of the product [excess 2-Et- 

hexanoic acid, CH2C12 with catalytic Pd(PPh3j4] qave the amorphous zwitterion (18) as a 

mixture of diastereoisomers (for convenience, only one isomer is depicted). This material 

had in vitro antibacterial spectrum and potency approximately one-half that of 

D-phenylglycyl-desacetoxy-amino-cephalosporinic acid (Keflexl. Other tj-acyl derivatives 

of this 3-ethylthioisocephem system were generally less potent than their cephalosporin 
11 

counterparts . 
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(14) R = t-BuO,CNH , R* = CH, I , R3 q H 

(15) 6 = NH_CO,Et , R2 = mph, R3 = 4- MeOC,H, 

Me-H 

(16) d q t-BuO,C , R* = yCHz 

(17) d q H, R* = “fCH2 ” 

Cl 

(18) d = Phy;O , R*= H 
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